Indian Statistical Institute, Bangalore B. Math. First Year, First Semester Analysis I

Mid-term Examination Maximum marks: 100 Date : Sept. 7, 2016 Time: 3 hours

[15]

[15]

[15]

Here the set of natural numbers $\{1, 2, 3, \ldots\}$ is denoted by \mathbb{N} and the set of real numbers is denoted by \mathbb{R} .

1. Let S be a non-empty finite set and let $g: S \to S$ be a function. Show that there exists $x \in S$ and $n \in \mathbb{N}$ such that $g^n(x) = x$,

where $g^n = g \circ g \circ \cdots \circ g$ (*n* times).

2. Prove or disprove the claim that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, defined by

$$f(m,n) = 2^{m-1}(2n-1),$$

is a bijection.

- 3. Show that given any two numbers $x, y \in \mathbb{R}$ with x < y there exists a rational number r such that x < r < y. [15]
- 4. Let $\{b_n\}_{n\geq 1}$ be a sequence of non-zero real numbers converging to a non-zero real number c. Show that the sequence $\{\frac{1}{b_n}\}_{n\geq 1}$ converges to $\frac{1}{c}$. [15]
- 5. Define \liminf and \limsup of bounded sequences. Show that a bounded sequence $\{x_n\}_{n\geq 1}$ is convergent if and only if

$$\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n.$$

- 6. Show that a series of real numbers $\sum_{n=1}^{\infty} a_n$ is convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent and the converse is not true. [15]
- 7. Let z be the real number with binary expansion:

$$z = 0.b_1b_2b_3\ldots,$$

where $b_k = 1$ if k = 3n + 1 for some natural number n, and $b_k = 0$ otherwise. Compute the decimal expansion of z. [15]